
Scoring Algorithm
Unfortunately, we can't display every part of the power grid on one light, but we can “summarise”
that information into one metric. That summarisation process is called a Scoring Algorithm. That
metric is configurable, and there are lots of options. Here's my favourite two:

Cumulative CO2e Emissions

The total CO2e being released by New Zealand's grid at this moment, in Tonnes/hour. Heavily
influenced by the current power output of the grid, making it cycle on a daily basis. It shows how
"strained" the power-grid currently is.

CO2e Intensity
The amount of extra CO2e emitted by the grid if you turned on an appliance, in gCO2e/kWh.
Heavily influenced by sources of power and the operational status of power-plants, meaning it has
much longer cycles than the Cumulative Output.

Changing the Scoring Algorithm
To change from the default Cumulative CO2e Emissions metric, you'll need to start by looking in
src/powerstations.cpp line 71 , and swap it from the calculating from the emission data, to the
intensity data.

Changing:

This is the default metric used for your Micro-Indicator

https://wiki.dirtywatts.nz/uploads/images/gallery/2023-08/9qaRd4nWlD2lBy1S-co2etotalbar.png
https://wiki.dirtywatts.nz/uploads/images/gallery/2023-08/RtoDIHmpuT05Gk1i-co2eintensitybar.png

To:

When you re-upload your code, your device will now show the CO2e Intensity colour scale.

Algorithm Dissection
There are three pieces of data we use to decide what colour to show:

1. The scoring_datum , the cumulative CO2e emissions or intensity metric
2. The scoring_range , the set min/max possible values of the metric
3. The colourRange , the set point RGB colours calculated from the Oklab colour space in this

notebook. There are two colour options: one for screens and another for lights. They were
designed to match each other across both light and screen Micro-Indicators.

With those values, we can find the position of the metric in the range of values, and map that onto
the closest colour in the colourRange .

// Calculate colour using new scoring algorithm

DoubleRange scoring_range = { CO2E_EMISSIONS_RANGE_MIN, CO2E_EMISSIONS_RANGE_MAX };
double scoring_datum = this->co2e_emissions;

// DoubleRange scoring_range = { CO2E_INTENSITY_RANGE_MIN, CO2E_INTENSITY_RANGE_MAX };
// double scoring_datum = this->co2e_intensity;

// Calculate colour using new scoring algorithm

// DoubleRange scoring_range = { CO2E_EMISSIONS_RANGE_MIN, CO2E_EMISSIONS_RANGE_MAX };
// double scoring_datum = this->co2e_emissions;

DoubleRange scoring_range = { CO2E_INTENSITY_RANGE_MIN, CO2E_INTENSITY_RANGE_MAX };
double scoring_datum = this->co2e_intensity;

The scoring_range is calculated in this Juypter Notebook, and uses the max/min values from
August 2022 -> August 2023

https://nbviewer.org/github/Questionable-Research-Labs/DirtyWatts/blob/main/GenerationLevelAnalysis/main.ipynb
https://nbviewer.org/github/Questionable-Research-Labs/DirtyWatts/blob/main/GenerationLevelAnalysis/main.ipynb
https://nbviewer.org/github/Questionable-Research-Labs/DirtyWatts/blob/main/GenerationLevelAnalysis/main.ipynb

The function calculating this, PowerStations::calculateInstructionPoint() , starts off by clearing all the
previous calculations:

Then, it calculates the percentage renewable power according to the following table. It doesn’t use
the percentage to calculate the colour but is worked out to be displayed in text outputs, such as in
a Watch face.

Non-renewable Energy Renewable Energy

Coal Hydropower

Gas Wind

Cogeneration Geothermal

Diesel

void PowerStations::calculateInstructionPoint()
{
 // Initialise the instruction point
 memset(instructionPoint.colorScreen, 0, sizeof(instructionPoint.colorScreen)); // fill the array with zeros
 memset(instructionPoint.colorLight, 0, sizeof(instructionPoint.colorLight)); // fill the array with zeros

 instructionPoint.percentRenewable = 0;
 instructionPoint.powerSocketEnabled = true;

https://wiki.dirtywatts.nz/uploads/images/gallery/2023-08/byNH3JNw1OYNukut-co2intensitycoloursetupoints.png

After it's got that, it starts working out what colour to turn your light by choosing which piece of
data to work from:

Which it then can use to find the colour index to show:

Then it copies the colour from the two colour maps into the data structure with the rest of the
power station summary information.

// Calculate the total generation
double totalRenewable = this->geothermal.generation_mw + this->hydro.generation_mw + this-
>wind.generation_mw;
double totalNonRenewable = this->co_gen.generation_mw + this->coal.generation_mw + this-
>gas.generation_mw + this->diesel.generation_mw;

double totalGeneration = totalRenewable + totalNonRenewable;

...

double percentageRenewable = totalRenewable / totalGeneration;
instructionPoint.percentRenewable = percentageRenewable;

// Calculate colour using new scoring algorithm

DoubleRange scoring_range = { CO2E_EMISSIONS_RANGE_MIN, CO2E_EMISSIONS_RANGE_MAX };
double scoring_datum = this->co2e_emissions;

// DoubleRange scoring_range = { CO2E_INTENSITY_RANGE_MIN, CO2E_INTENSITY_RANGE_MAX };
// double scoring_datum = this->co2e_intensity;

double scoring_datum_norm = max(min(scoring_datum, scoring_range.max), scoring_range.min);
double scoring_datum_percent = (scoring_datum_norm - scoring_range.min) / (scoring_range.max -
scoring_range.min);
int colour_index = round(scoring_datum_percent * (COLOUR_MAP_LENGTH - 1));

memcpy(instructionPoint.colorLight, colourRangeLight[colour_index], sizeof(instructionPoint.colorLight));
memcpy(instructionPoint.colorScreen, colourRangeScreen[colour_index], sizeof(instructionPoint.colorScreen));

Lights and screens have separate colour maps to make them match with each other, they
are both generated from the same scientific colour scale here.

https://nbviewer.org/github/Questionable-Research-Labs/DirtyWatts/blob/main/GenerationLevelAnalysis/main.ipynb#:~:text=Generate%20Colour%20Map%20DataPack

As its last step, it calculates if a power socket should be turned on for Smart Socket Micro-
Indicators. If the metric is in its best half, the power socket should be enabled.

There you go! That's basically the whole thing, from top to bottom. With this information, you
might want to look into developing your own metrics. What about an indicator which only turned
when coal power is being used? It's up to you to make your indicator unique. Every time you are
ready to test your changes, you can plug in your NodeMCU and use the same Upload and Monitor
button as before.

// Calculate power socket recommendation
instructionPoint.powerSocketEnabled = scoring_datum_percent < 0.5;

Revision #8
Created 10 August 2023 00:34:50 by Admin
Updated 23 September 2023 23:32:41 by Admin

